16 research outputs found

    MLPInit: Embarrassingly Simple GNN Training Acceleration with MLP Initialization

    Full text link
    Training graph neural networks (GNNs) on large graphs is complex and extremely time consuming. This is attributed to overheads caused by sparse matrix multiplication, which are sidestepped when training multi-layer perceptrons (MLPs) with only node features. MLPs, by ignoring graph context, are simple and faster for graph data, however they usually sacrifice prediction accuracy, limiting their applications for graph data. We observe that for most message passing-based GNNs, we can trivially derive an analog MLP (we call this a PeerMLP) with an equivalent weight space, by setting the trainable parameters with the same shapes, making us curious about \textbf{\emph{how do GNNs using weights from a fully trained PeerMLP perform?}} Surprisingly, we find that GNNs initialized with such weights significantly outperform their PeerMLPs, motivating us to use PeerMLP training as a precursor, initialization step to GNN training. To this end, we propose an embarrassingly simple, yet hugely effective initialization method for GNN training acceleration, called MLPInit. Our extensive experiments on multiple large-scale graph datasets with diverse GNN architectures validate that MLPInit can accelerate the training of GNNs (up to 33X speedup on OGB-Products) and often improve prediction performance (e.g., up to 7.97%7.97\% improvement for GraphSAGE across 77 datasets for node classification, and up to 17.81%17.81\% improvement across 44 datasets for link prediction on metric Hits@10). The code is available at \href{https://github.com/snap-research/MLPInit-for-GNNs}.Comment: Accepted by ICLR202

    Flashlight: Scalable Link Prediction with Effective Decoders

    Full text link
    Link prediction (LP) has been recognized as an important task in graph learning with its broad practical applications. A typical application of LP is to retrieve the top scoring neighbors for a given source node, such as the friend recommendation. These services desire the high inference scalability to find the top scoring neighbors from many candidate nodes at low latencies. There are two popular decoders that the recent LP models mainly use to compute the edge scores from node embeddings: the HadamardMLP and Dot Product decoders. After theoretical and empirical analysis, we find that the HadamardMLP decoders are generally more effective for LP. However, HadamardMLP lacks the scalability for retrieving top scoring neighbors on large graphs, since to the best of our knowledge, there does not exist an algorithm to retrieve the top scoring neighbors for HadamardMLP decoders in sublinear complexity. To make HadamardMLP scalable, we propose the Flashlight algorithm to accelerate the top scoring neighbor retrievals for HadamardMLP: a sublinear algorithm that progressively applies approximate maximum inner product search (MIPS) techniques with adaptively adjusted query embeddings. Empirical results show that Flashlight improves the inference speed of LP by more than 100 times on the large OGBL-CITATION2 dataset without sacrificing effectiveness. Our work paves the way for large-scale LP applications with the effective HadamardMLP decoders by greatly accelerating their inference

    Empowering Graph Representation Learning with Test-Time Graph Transformation

    Full text link
    As powerful tools for representation learning on graphs, graph neural networks (GNNs) have facilitated various applications from drug discovery to recommender systems. Nevertheless, the effectiveness of GNNs is immensely challenged by issues related to data quality, such as distribution shift, abnormal features and adversarial attacks. Recent efforts have been made on tackling these issues from a modeling perspective which requires additional cost of changing model architectures or re-training model parameters. In this work, we provide a data-centric view to tackle these issues and propose a graph transformation framework named GTrans which adapts and refines graph data at test time to achieve better performance. We provide theoretical analysis on the design of the framework and discuss why adapting graph data works better than adapting the model. Extensive experiments have demonstrated the effectiveness of GTrans on three distinct scenarios for eight benchmark datasets where suboptimal data is presented. Remarkably, GTrans performs the best in most cases with improvements up to 2.8%, 8.2% and 3.8% over the best baselines on three experimental settings

    Data Augmentation for Graph Neural Networks

    Full text link
    Data augmentation has been widely used to improve generalizability of machine learning models. However, comparatively little work studies data augmentation for graphs. This is largely due to the complex, non-Euclidean structure of graphs, which limits possible manipulation operations. Augmentation operations commonly used in vision and language have no analogs for graphs. Our work studies graph data augmentation for graph neural networks (GNNs) in the context of improving semi-supervised node-classification. We discuss practical and theoretical motivations, considerations and strategies for graph data augmentation. Our work shows that neural edge predictors can effectively encode class-homophilic structure to promote intra-class edges and demote inter-class edges in given graph structure, and our main contribution introduces the GAug graph data augmentation framework, which leverages these insights to improve performance in GNN-based node classification via edge prediction. Extensive experiments on multiple benchmarks show that augmentation via GAug improves performance across GNN architectures and datasets.Comment: AAAI 2021. This complete version contains the Appendi

    Link Prediction with Non-Contrastive Learning

    Full text link
    A recent focal area in the space of graph neural networks (GNNs) is graph self-supervised learning (SSL), which aims to derive useful node representations without labeled data. Notably, many state-of-the-art graph SSL methods are contrastive methods, which use a combination of positive and negative samples to learn node representations. Owing to challenges in negative sampling (slowness and model sensitivity), recent literature introduced non-contrastive methods, which instead only use positive samples. Though such methods have shown promising performance in node-level tasks, their suitability for link prediction tasks, which are concerned with predicting link existence between pairs of nodes (and have broad applicability to recommendation systems contexts) is yet unexplored. In this work, we extensively evaluate the performance of existing non-contrastive methods for link prediction in both transductive and inductive settings. While most existing non-contrastive methods perform poorly overall, we find that, surprisingly, BGRL generally performs well in transductive settings. However, it performs poorly in the more realistic inductive settings where the model has to generalize to links to/from unseen nodes. We find that non-contrastive models tend to overfit to the training graph and use this analysis to propose T-BGRL, a novel non-contrastive framework that incorporates cheap corruptions to improve the generalization ability of the model. This simple modification strongly improves inductive performance in 5/6 of our datasets, with up to a 120% improvement in Hits@50--all with comparable speed to other non-contrastive baselines and up to 14x faster than the best-performing contrastive baseline. Our work imparts interesting findings about non-contrastive learning for link prediction and paves the way for future researchers to further expand upon this area.Comment: ICLR 2023. 19 pages, 6 figure

    Knowing your FATE: Friendship, Action and Temporal Explanations for User Engagement Prediction on Social Apps

    Full text link
    With the rapid growth and prevalence of social network applications (Apps) in recent years, understanding user engagement has become increasingly important, to provide useful insights for future App design and development. While several promising neural modeling approaches were recently pioneered for accurate user engagement prediction, their black-box designs are unfortunately limited in model explainability. In this paper, we study a novel problem of explainable user engagement prediction for social network Apps. First, we propose a flexible definition of user engagement for various business scenarios, based on future metric expectations. Next, we design an end-to-end neural framework, FATE, which incorporates three key factors that we identify to influence user engagement, namely friendships, user actions, and temporal dynamics to achieve explainable engagement predictions. FATE is based on a tensor-based graph neural network (GNN), LSTM and a mixture attention mechanism, which allows for (a) predictive explanations based on learned weights across different feature categories, (b) reduced network complexity, and (c) improved performance in both prediction accuracy and training/inference time. We conduct extensive experiments on two large-scale datasets from Snapchat, where FATE outperforms state-of-the-art approaches by ≈10%{\approx}10\% error and ≈20%{\approx}20\% runtime reduction. We also evaluate explanations from FATE, showing strong quantitative and qualitative performance.Comment: Accepted to KDD 2020 Applied Data Science Trac

    Graph Condensation for Graph Neural Networks

    Full text link
    Given the prevalence of large-scale graphs in real-world applications, the storage and time for training neural models have raised increasing concerns. To alleviate the concerns, we propose and study the problem of graph condensation for graph neural networks (GNNs). Specifically, we aim to condense the large, original graph into a small, synthetic and highly-informative graph, such that GNNs trained on the small graph and large graph have comparable performance. We approach the condensation problem by imitating the GNN training trajectory on the original graph through the optimization of a gradient matching loss and design a strategy to condense node futures and structural information simultaneously. Extensive experiments have demonstrated the effectiveness of the proposed framework in condensing different graph datasets into informative smaller graphs. In particular, we are able to approximate the original test accuracy by 95.3% on Reddit, 99.8% on Flickr and 99.0% on Citeseer, while reducing their graph size by more than 99.9%, and the condensed graphs can be used to train various GNN architectures.Comment: 16 pages, 4 figure

    Linkless Link Prediction via Relational Distillation

    Full text link
    Graph Neural Networks (GNNs) have shown exceptional performance in the task of link prediction. Despite their effectiveness, the high latency brought by non-trivial neighborhood data dependency limits GNNs in practical deployments. Conversely, the known efficient MLPs are much less effective than GNNs due to the lack of relational knowledge. In this work, to combine the advantages of GNNs and MLPs, we start with exploring direct knowledge distillation (KD) methods for link prediction, i.e., predicted logit-based matching and node representation-based matching. Upon observing direct KD analogs do not perform well for link prediction, we propose a relational KD framework, Linkless Link Prediction (LLP), to distill knowledge for link prediction with MLPs. Unlike simple KD methods that match independent link logits or node representations, LLP distills relational knowledge that is centered around each (anchor) node to the student MLP. Specifically, we propose rank-based matching and distribution-based matching strategies that complement each other. Extensive experiments demonstrate that LLP boosts the link prediction performance of MLPs with significant margins, and even outperforms the teacher GNNs on 7 out of 8 benchmarks. LLP also achieves a 70.68x speedup in link prediction inference compared to GNNs on the large-scale OGB dataset
    corecore